Publikationen

2017

1. Hahnen E., et. al., Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer: Secondary Analysis of the GeparSixto Randomized Clinical Trial. JAMA Oncol. 2017 Jul 13. doi: 10.1001/jamaoncol.2017.1007.

https://www.ncbi.nlm.nih.gov/pubmed/28715532

2. Kuchenbaecker K. B., et. al., Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20;317(23):2402-2416. doi: 10.1001/jama.2017.7112.

https://www.ncbi.nlm.nih.gov/pubmed/28632866

3. Hahnen E., et. al., Germline Mutations in Triple-Negative Breast Cancer. Breast Care (Basel). 2017 Mar;12(1):15-19. doi: 10.1159/000455999. Epub 2017 Feb 24.

https://www.ncbi.nlm.nih.gov/pubmed/28611536

4. Lecarpentier J., et. al., Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J Clin Oncol. 2017 Jul 10;35(20):2240-2250. doi: 10.1200/JCO.2016.69.4935. Epub 2017 Apr 27.

https://www.ncbi.nlm.nih.gov/pubmed/28448241

5. Kuchenbaecker K. B., et. al., Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst. 2017 Jul 1;109(7). doi: 10.1093/jnci/djw302.

https://www.ncbi.nlm.nih.gov/pubmed/28376175

6. Phelan C. M., et. al., Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017 May;49(5):680-691. doi: 10.1038/ng.3826. Epub 2017 Mar 27.

https://www.ncbi.nlm.nih.gov/pubmed/28346442

7. Walker L. C., et. al., Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. Eur J Hum Genet. 2017 Apr;25(4):432-438. doi: 10.1038/ejhg.2016.203. Epub 2017 Feb 1.

https://www.ncbi.nlm.nih.gov/pubmed/28145423

8. Hamdi Y., et. al., Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Res Treat. 2017 Jan;161(1):117-134. doi: 10.1007/s10549-016-4018-2. Epub 2016 Oct 28.

https://www.ncbi.nlm.nih.gov/pubmed/27796716

9. Muranen T. A., et. al., Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet Med. 2017 May;19(5):599-603. doi: 10.1038/gim.2016.147. Epub 2016 Oct 6.

https://www.ncbi.nlm.nih.gov/pubmed/27711073

10. Neidhardt G., et. al., The RAD51C exonic splice-site mutations c.404G>C and c.404G>T are associated with familial breast and ovarian cancer. Eur J Cancer Prev. 2017 Mar;26(2):165-169. doi: 10.1097/CEJ.0000000000000240.

https://www.ncbi.nlm.nih.gov/pubmed/27622768

11. Brédart A., et. al., Use of the BOADICEA Web Application in clinical practice: appraisals by clinicians from various countries. Fam Cancer. 2017 Jun 16. doi: 10.1007/s10689-017-0014-x.

https://www.ncbi.nlm.nih.gov/pubmed/28623477

12. Müller D., et. al., Cost-effectiveness of different strategies to prevent breast and ovarian cancer in German women with a BRCA 1 or 2 mutation. Eur J Health Econ. 2017 Apr 5. doi: 10.1007/s10198-017-0887-5.

https://www.ncbi.nlm.nih.gov/pubmed/28382503

13. Reinisch M., et. al., pCR rates in patients with bilateral breast cancer after neoadjuvant anthracycline-taxane based-chemotherapy - A retrospective pooled analysis of individual patients data of four German neoadjuvant trials. Breast. 2017 Apr;32:73-78. doi: 10.1016/j.breast.2016.12.020. Epub 2017 Jan 5.

https://www.ncbi.nlm.nih.gov/pubmed/28063331